If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4.9t^2+750t+10=0
a = -4.9; b = 750; c = +10;
Δ = b2-4ac
Δ = 7502-4·(-4.9)·10
Δ = 562696
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{562696}=\sqrt{4*140674}=\sqrt{4}*\sqrt{140674}=2\sqrt{140674}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(750)-2\sqrt{140674}}{2*-4.9}=\frac{-750-2\sqrt{140674}}{-9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(750)+2\sqrt{140674}}{2*-4.9}=\frac{-750+2\sqrt{140674}}{-9.8} $
| y*y*y=5 | | YxYxY=5 | | 1+4x=-5x+10 | | X4+4=10x2 | | 9x-28=4x-8 | | 196/15=x | | 5(11x+6)=1 | | -5(x-3)+2=42 | | 6.27x+64=39.3129+8x | | 11x-2x+66=11x+30 | | 15r-7r+8+8r=8 | | -8v+5(v-5)=-22 | | 3.5-0.44x=-1.98 | | 60+6.10x=15x | | 4y+10=3y+5 | | (5x-17)=77 | | 16/15=x-12 | | 84=2m+4(1-3m) | | 7x-5=9x+9 | | 3x+()=25 | | (3x+22)=77 | | 175=7(1-8n) | | (3x+22)=(5x-17) | | 60+30+x=180 | | 139=1-6(-7a-2) | | h•9=-72 | | 5^x-4=10 | | 139=1-6(-7a-2 | | 0.3(b-21=3.6 | | 5=8x^2+14x | | 1.08g-8=0.10 | | 4(-5p-4)=-176 |